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The minimum energy requirements of information transfer and computing are 
estimated from the time-energy uncertainty relation. 

1. INTRODUCTION 

In 1961/1962 this author proposed that the uncertainty principle of 
quantum mechanics imposes fundamental limitations upon computers 
(Bremermann, 1962a, 1962b). As Von Neumann (1958) pointed out, com- 
puters represent data by physical markers. In the course of computation, 
data are transferred between subunits. This implies that the physical markers 
that represent data must be measured whenever data are stored, retrieved, 
transmitted, or entered into the arithmetic unit, central unit, etc. 

Measurements are subject to error margins because of the Heisenberg 
uncertainty principle of quantum mechanics. In practice signal energies are 
large and markers are spaced far enough apart for quantum uncertainties to 
be insignificant. As computers are being miniaturized and signal energies 
are reduced the safety margins are shrinking, while at the same time 
computing power per pound of hardware is increased. Eventually a limit is 
approached where the quantum uncertainties prevent further miniaturiza- 
tion and an upper limit of computing power is reached. 

Data processing in a Von Neumann-type computer consists of several 
kinds of operations: input, output, storage and retrieval, logical and arith- 
metic operations, and control. Transmission between subunits lends itself 
most easily to a quantum uncertainty analysis. A unit that receives data 
from another unit must interpret the markers that are transmitted. We 
propose that the receiving unit is subject to the same uncertainty laws as the 
entity of quantum mechanics known as observer. In other words, the 
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receiver (input) measures physical observables and it makes no difference, 
for the purpose of attainable accuracy, whether the observables affect a 
modular subunit of a computer or a human observer who is coupled to the 
measurement apparatus. If in a computer subunits are not uncoupled in this 
way they should not be considered as separate but as a single system. 

In both his 1962a and 1967a papers this author proposed to apply 
Shannon's theory of the transmission capacity over a noisy, continuous 
channel to the problem. Shannon's formula for the capacity C of a noisy 
channel is 

C = bandwidth • log( 1 + S / N  ) 

where bandwidth is the width of the frequency band transmitted (in 
cycles/sec), and S / N  is the signal-to-noise power ratio. C is the maximum 
rate (in bits per second) at which data can be transmitted and recovered 
(Shannon, 1948). 

The bandwidth open in a quantum channel is limited by ~'r,l~ = Em~_,/h 
<<- mc2/h, where Em~_, is the maximum energy available, divided by Planck's 
quantum since for ~, > ~'m~ there is not enough energy to produce a single 
photon. We also assume that photons would be the most efficient use of 
mass/energy for signaling since they are the only particles without a rest 
mass. The author proposed that energy-t ime uncertainty relation could be 
interpreted as generating a quantum noise such that the signal-to-noise 
power ratio equals 1 (This ratio has now been revised to 4~r). 

This results in an upper limit of information transmission of C ~  
(mc2/h)ln( 1 + 4Ir). 

The author's argument about the signal-to-noise ratio has been ques- 
tioned by Bekenstein (1981), who recently rederived the author's result in a 
framework of cosmology, general relativity, and the thermodynamics of 
black holes. Bekenstein's method is based on thermodynamics as gener- 
alized to a relativistic system involving black holes that radiate /t la 
Hawking. In the work of Bekenstein (1973, 1980, 1981a, b) and Hawking 
(1975, 1975) the entropy of a system with a finite effective radius has a 
bound which implies that the amount of information (number of bits) that 
can be encoded in the distinguishable states of the system is bounded. From 
this bound Bekenstein derives a bound for the amount of information that 
is transmissible per unit of mass and energy per second. This bound is the 
same as the author's except for a numerical factor of 27r2/ln2 versus 
ln(1 + 4~r). 

The author's argument in contrast is based on the t ime-energy uncer- 
tainty principle of quantum mechanics and does not involve general relativ- 
ity, curved space, singularities, or cosmology. In the following we will show 
that the uncertainty relation for time and energy does indeed give a 
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signal-to-noise ratio S / N = 4 7 r  and that consequently, our result follows 
from Shannon's formula. The author's result thus seems to form a logical 
link between the entropy bound in a relativistic universe including black 
holes and the uncertainty principle. 

In view of the fundamental nature of the result and because of the 
extraordinary problems that have arisen in a precise interpretation of the 
t ime-energy uncertainty relationship, we will discuss it in the following in 
some detail. Basically it is a mathematical phenomenon in Fourier theory. 
In the spirit of this conference we "squeeze quantum effects into a small 
corner." 

2. UNCERTAINTY RELATIONS AND THEIR 
INTERPRETATION 

The uncertainty principle, classically, applies to the simultaneous mea- 
surement of position and momentum of a particle in nonrelativistic quan- 
tum mechanics. Let qJ be the time-dependent wave function describing the 
particle. Let x be the position operator (which describes measurement of 
position) and p the momentum operator; then 

and 

where 

(Ax)Z = x0)l+> 
(+l+) 

(Ap)2= (q l(P--Po)Zl +) 

x0-  

(@lplq ) 
p0-  

Here x 0 and P0 are the expectation values of the measurements and Ax and 
Ap the second moments (variances) of the probability distributions of 
measured values. The uncertainty relation states that 

h h 
AxAp>~ -- 

2 47r 

where h is Planck's quantum. (We note that different authors write h as well 

as h instead of h /2 . )  
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Position and momentum are conjugate coordinates, their product has 
the dimension of action = energy • time. In special relativity time and space 
variables are connected by Lorentz invariance, as are energy and momen- 
tum. Thus one expects for reasons of symmetry the analogous energy-t ime 
uncertainty relation A E A t/> h / 2 .  

The interpretation of this energy-time uncertainty relation, however, 
poses special problems (Allcock, 1969; Wigner, 1972). Allcock's papers 
contain a review of the literature of the t ime-energy uncertainty principle as 
well as criticism of imprecise interpretations. Allcock expresses pessimism 
about the possibility of incorporating it into the present framework of 
quantum mechanics. Wigner (1972) points out that it is best not to interpret 
it in abstract but for specific instances such as the lifetime versus energy 
spread of excited states and unstable particles or the arrival of a particle in a 
fixed plane in space. The posi t ion-momentum uncertainty relation in 
nonrelativistic quantum mechanics refers to the position and momentum 
operators at an instant of time and hence to the uncertainties at an instant 
of time. Berestetskii et al. (1971) point out that measurements take time, and 
that shorter and shorter measurements would involve higher and higher 
velocities. Since velocities are limited by the light velocity, measurements 
(and uncertainties) at an instant of time are unphysical idealizations. 

Wigner (1972) refers to another difficulty for the t ime-energy uncer- 
tainty relation in the nonrelativistic theory: In this theory there is a lower 
bound for the energy, while the only functions that satisfy the uncertainty 
equality are Gaussians (functions which do not have lower bounded sup- 
port). Thus all physical wave functions satisfy at most the inequality, and in 
some instances a sharper inequality (Wigner, 1972). Mathematically, how- 
ever, the Gaussians can be approximated arbitrarily closely by functions 
with compact support such that the mathematical uncertainty relation (cf. 
Papoulis, 1962) for the function and its Fourier transform is approximated 
arbitrarily closely. Hence in general, the uncertainty relation is sharp, even 
in nonrelativistic quantum mechanics. 

The connection with physics occurs because the energy representation 
of the wave function is identical with the Fourier transform of its time 
representation, multiplied by h. 

3. THE MATHEMATICAL UNCERTAINTY RELATION 

Let f ~  L 2 ( -  oo, oo), and t f E  L 2 ( - ~ , o o  ) meaning that f ( t )  and t f ( t )  
are square integrable over the interval ( -  oo, oo). Let 
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and 

F(  ~o ) = ) e  `~ dt 

be its Fourier transform. Then 2rrll f 112 = I[FII = In the following we 
normalize II f II 2 = (1/2rr)[I F II 2 = 1. Let 

t o - -  tlf(t)12d* 
~c 

/5 ,Oo = ,o l f (  ,o )l ~ d ,o  

Define: 

Then 

( A t ) 2 :  ( t - t o ) - l f ( t ) l - d t  
OG 

(A,~)2 = f ?  (~o-  % ) 2 l f ( ~ ) l e d ~  
oo 

Equality holds if and only if 

and 

(~r) i/2 
AtA,~ ~> -~- 

)W2 , 
F( w ) = -~ exp( ir o --  r 

O~ 

a > 0  

4. ENERGY-TIME UNCERTAINTY RELATION 

Wigner (1972) tackled the time-energy uncertainty relation in the 
framework of ordinary quantum mechanics as follows: He proposed to 

Thus equality holds if and only if both f ( t )  and IF(co) I are Gaussians and 
the meaning of the uncertainty relation is " I f  one Gaussian is narrow its 
Fourier transform is a broadly spread Gaussian, and vice versa." [The 
results of this section may be found in texts on Fourier transforms such as 
Papoulis (1962)]. 



208 Bremermann 

single out a position coordinate,  x (analogous to the time coordinate  which 
is singled out in conventional  nonrelativistic quan tum mechanics) and writes 

and 

where 

( A T )  2 = 
f f f -~ 9 I + ( x ,  y ,  - ,  t )  I - ( ;  - to)-  4vd:,# 

f f f  l@(x, .v, z, tl2 d.vdzdt 

( A E )  2 = 
f f fl,(.,-,.,,,=,,)12(E - eo)2+d=de 

f f flep(x,y,:,t)12 dvd-dE 

, ( x ,  ,,, :. E)= f + ( x .  ,,. z, t)e 'E'/h dt 

He points out that the wave function can be replaced by 

f o( r )*q4.,, r)dr 

where r = ()', z, t) and 0 is an arbitrary function of r, not depending upon x. 
The resulting uncertainty relation then is valid for an instant of x, that is, 
x = const, which is a plane in space. 

We now assume that by suitable choice of o(r) we can describe the 
interaction of the wave function + with a measurement  apparatus  located in 
the plane x = const. This could be a photon  detector, or electron detector, 
etc. 

We thus have an uncertainty relation for 

x(, 3= f f o( v, .~,,)~( v. :,,)d,,d: 

where X is the averaged wave function of + averaged with 0. Its energy 
representation is 

Since the energy representation equals the mathematical  Fourier  t ransform 
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of X(t) at ~o = E / h : ~ ( E )  =if (X,  E / h )  then 

II rt II ~:: : f l ~ (  E)I 2 d E : -  @ ~.~(X, ~o) 12 d ~ :  h27rllxll 2 

Note that (AE)  2 = h3(Aoa)2/l] "q II 2. Hence 

AEAt  - 
hA~oAt ~> h (7r)~/2 h 

(27r)~/2 [Ixl I (2~r) '/2 2- = ~  

Note: We obtain the uncertainty relations with h,/2 rather than h. 
Wigner and many authors write h/2 ,  but other authors, for example, 
Berestetskii et al. (1971), write h. These differences may arise from different 
definitions of the Fourier transform and the inverse Fourier transform 
where different authors place a factor 2v either in the forward or inverse 
transform or divide it between the transforms. 

Note that the uncertainty relation is basically a mathematical result 
about Fourier transforms. All the physics is contained in the interpretation 
of the energy representation of the wave function and its second moment. 

5. APPLICATION OF T H E  UNCERTAINTY RELATION TO  
SIGNAL TRANSMISSION 

For the physical transmission of signals a carrier is required, e.g., 
photons or electrons, or possibly other kinds of particles. 

In 1948 Claude Shannon analyzed the transmission of information over 
the continuous, band-limited, noisy channel. A channel is defined by an 
ensemble of functions which are admissible as signals s(t) and which can 
occur as noise n(t). It is assumed that s(t) is transmitted and s( t)+ n(t) is 
received. 

Let 

S2 = ~ T  foATS2( t ) dt = signal power 

and 

1 AT 2 
N 2 - - ~ f  ~ n ( t )d t  = noise power 

Let W be the bandwidth of the channel. 
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For white noise (flat band-limited spectrum) Shannon derives for the 
transmission capacity of the band-limited channel the following theorem: 

Let 

If R is the (informational) entropy per second of a source (measured in 
bits per second) and if R < C, then it is possible to make the error rate of 
transmission arbitrarily small, by suitable encoding and decoding. For 
R > C this is not possible. 

Consider now a physical information channel. Let Em,,~ be the maximal 
signal energy. Photon quanta carry an energy of hr. Thus a limitation of the 
signal energy limits the maximum frequency of the photons to 

Emax 
Pma.x - -  h 

since for frequencies exceeding ~, .... there is not enough energy for a single 
photon. 

Suppose the signal is represented by the function X(t) derived in the 
previous section. How can X(t) be measured? We will assume that the 
photon channel is as efficient a use of signaling energy as any other physical 
channel. Photons have no rest mass and thus require no energy investment 
in rest mass. We assume that photons can be used as efficiently as any other 
particles for signaling. Particles with mass, such as electrons and heavier 
particles, would use up large amounts of the total energy in their mass. 
Moving masses can be detected by measuring their momentum, which is 
again subject to the uncertainty principle. Moving charges can be detected 
through radiation, which takes us back to photons. Or particles can be 
detected through interaction with other particles, but these interactions 
ultimately seem to be detected by photon a n d / o r  momentum measurements 
(cf. Feynman et al. 1963). 

A full analysis is beyond our means. Quantum mechanics has conve- 
niently buried all the problems of measurement and the entity called 
observer in the operator formalism. 

We will assume that ultimately, whatever the details, measurements 
reduce to energy-frequency measurements, that such measurements take 
time, and that the accuracy depends upon the length of time available for 
measurement. We interpret the t ime-energy uncertainty relation to mean 
that no matter how energy is measured during an interval AT there remains 
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an uncertainty 

h 
A E ~ > - -  

2AT 

for a normalized wave function, The uncertainty of the energy signal applies 
to the entire length of the measurement interval. We interpret it as constitut- 
ing white noise with a flat spectrum over the frequency band, in other words 
noise, with the characteristics required by Shannon's theorem. (Shannon's 
analysis shows that the shape of the noise spectrum has some but limited 
influence on C.) 

The energy of the signal is given by II~ll~ = h27rllxll 2 where [Ixll is 
normalized to 1. Hence the signal power S (energy per unit of time) is given 
by h2~/AT. Hence the signal-to-noise power ratio 

S h2~r 2 AT 
--4qr 

N AT h 

Note that S/N = 4Tr independent of the length of AT. Thus the fastest rate 
at which information can be transmitted over an energy limited channel is 

Em~, ,,,,,2 
ln(l +4~r )=  :-'-~---ln( 1 +4~r) C- -  h [(bits/sec)] 

Except for the factor ln( l+4~r)  this is the same figure as derived in 
Bremermann (1962a, 1967a). 

We note that the bound on the rate of information transmission is 
unaffected when the total signal energy is divided between two or more 
channels and it is independent of the total length of transmission. If it were 
otherwise nonlinearities would arise and make matters very complicated. 

6. ANALOG AND PARALLEL COMPUTERS 

The Von Neumann-type computer (cf. Arbib, 1964) is a model of 
computation slanted towards sequential, logical and numerical computation. 
The human brain, in contrast, processes data in parallel. The intrinsic 
complexity of many mathematical tasks (cf. Bremermann, 1974, 1979) can 
make parallel computation intrinsically faster for some tasks (cf. Csanky 
and Bremermann, 1976; Csanky, 1976), though not necessarily for all. 

The limit of the rate of information processing affects parallel com- 
puters the same as it affects Von Neumann-type computers, except that a 
parallel computer may contain a greater number of internal data transmis- 

sion channels. 
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The same statement can be made for finite-state automata, except that 
the subunits in a finite-state automaton are themselves finite-state automata 
and are not restricted to arithmetic units, storage, control units, etc., as in a 
Von Neumann or parallel computer. 

There is a well-developed theory of the effects of inputs on the internal 
states of a finite-state automaton: the Krohn-Rhodes  theory. [For an 
exposition, cf. Kalman et al. 1969]. Concatenated inputs act as a semigroup 
of transformations on the state space of the automaton. The semigroup can 
be decomposed, a la Krohn-Rhodes ,  into simple groups and special semi- 
groups that represent the state transformations of a flip-flop. The latter is 
known to be an intrinsically dissipative circuit (Landauer, 1961; Bennett, 
1973). Thus a discussion of the physics of finite-state automata points 
toward thermodynamics rather than quantum mechanics. 

Our quantum bound of information transfer affects internal transmis- 
sion between subunits (if any), the rate at which information may enter and 
the rate at which output can be observed. In contrast, dissipation (entropy 
production) is affected by the structure of the automaton itself. If an 
automaton contains flip-flops it will generate entropy when the flip-flops 
are activated. However, dissipative circuitry can, in principle, be replaced by 
nondissipative circuitry that is capable of the same input-output  transfor- 
mation as the original circuitry (Fredkin and Toffoli 1981; Bennett, 1973). 
The nondissipative circuitry, however, would have a different state space. 
This author proposed (Bremermann, 1974a) that a finite-state automaton 
whose state space transformation semigroup is actually a group need not 
necessarily generate entropy, while an automaton whose associated semi- 
group contains noninvertible transformations must dissipate entropy for 
some inputs. (A unification of automata theory with network thermody- 
namics seems called for. Cf. Oster et al. 1973, Perelson, 1975). 

To accomodate analog computation in a general sense (not just dif- 
ferential analyzers) we propose to utilize the concept of a dynamical system 
with controls (cf. Kalman et al. 1973; Bremermann, 1974b). In a nutshell, 
this concept generalizes the concept of finite-state automaton to automata 
with potentially infinite state spaces, and continuous input and outputs. In 
view of our quantum limit the maximum rate of information input and 
output is still finite and bounded even though a continuum of input and 
output functions are possible. In other words, the quantum limit applies to 
the input and output and to internal transmission of information between 
subunits. 

In other words, the minimum energy requirement for transmission 
affects internal transmission between subunits of computers of any kind: 
Von Neumann-type, parallel, digital, and computers that process continu- 
ous signals (analog computers). Computers may or may not be dissipative. 
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The minimum energy requirement for transmission says nothing about 
dissipation and energy could be reused. When dissipation is studied addi- 
tional constraints may arise. Thus the minimum energy requirement is more 
akin to the first law of thermodynamics than to the second law. 

7. THE PERCEPTION OF COMPLEXITY 

The author's concern about complexity and ultimate limits of comput- 
ing was stimulated by seminars in artificial intelligence, beginning in 1959. 
The now flourishing mathematical complexity theory was virtually nonex- 
istent at that time. However, it soon became apparent that proving theorems 
and playing games (such as chess or go) led to the search of trees (state 
space representations) which always seemed to grow exponentially. Ex- 
ponential growth quickly exceeds available computing power, even as 
technology advances. At that time mathematical logic paid virtually no 
attention to complexity questions (limiting concern to a distinction between 
finite and, ironically, different degrees of infinity). 

Stimulated by Brillouin (1956), Landauer (1961), and Von Neumann 
(1958) it soon became clear to the author that physics might impose 
ultimate limits on computing that would affect fundamentally human ability 
to penetrate irreducibly complex problems. This realization generates a 
multiple challenge: (1) to understand the limits of computation, (2) to 
determine which problems are really irreducibly complex and which can be 
simplified, and (3) to determine the implications for epistemology, such as 
the predictability of complex physical and biological systems. 

After a slow start in the sixties, mathematical complexity theory has 
flourished in the seventies. As one may expect, there really are irreducibly 
complex problems (cf. Stockmeyer and Chandra, 1979). The impetus for 
much of this work seems to have come from computer science and opera- 
tions research rather than from the traditional mathematical community (cf. 
Knuth, 1976). 

Landauer, (1961, 1973, 1976), Bennett (1973), Fredkin and Toffoli 
(1981), Ashby (1967, 1968, 1973), and the author (1962a, b, 1967a, 1977) are 
among the people who maintained an interest in the physics of computation 
since 1961. 

Ashby emphasized the epistemological consequences of the limit for 
systems theory and cybernetics in several subsequent papers (cf. Ashby, 
1967, 1973). 

The author was well aware of the preliminary nature of his result and 
he attempted to improve his argument in (1967a); however he found the 
physics literature on the time-energy uncertainty relation difficult to inter- 
pret. As the papers by Allcock (1969) and Wigner (1972) show, these 
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difficulties are rather fundamental. Allcock even expressed pessimism about 
the consistency of the time-energy uncertainty principle with quantum 
mechanics. 

In 1967 the author became aware of the work of L. Levitin (1965) on 
the transmission of information over photon channels. His work initially 
seemed to disagree with the author's, but seems based on somewhat differ- 
ent assumptions. For a bibliography of his work see his paper in these 
proceedings (Levitin, 1982). 

Various other authors (Ligomenides, 1967, Keyes, 1982) have pursued 
similar ideas, though in less generality and similarly affected by difficulties 
with a precise interpretation of the time-energy uncertainty principle. To 
the author's surprise his 1962 limit has how been derived from results of 
Bekenstein, Gibbons, and Hawking on the entropy of black holes. See 
Bekenstein 1980 for a history of the idea that black holes have entropy. 

Hawking's work successfully combines general relativity with quantum 
effects. Bekenstein's work on the entropy of black holes could not proceed 
without this breakthrough. Perhaps the meaning of it all is that the second 
law of thermodynamics really is a quantum phenomenon and that the 
time-energy uncertainty principle remains incomplete unless it is embedded 
into general relativity. 

This author has mentioned cosmological aspects (e.g., less than 
10 ~2~ bits could have been transmitted in the universe since the big bang 
Bremermann, 1977; cf. also Bremermann, 1962), but this aspect had been 
secondary. In the work of Bekenstein the order of inference is reversed. 

We note that complexity phenomena also play a fundamental role 
in genetics and evolution (Bremermann, 1963; Maynard Smith, 1979: 
Lumsden and Wilson, 1981). 

8. GEOMETRIZATION OF MOMENTUM SPACE? 

Perhaps general relativity is likewise relevant to a better understanding 
of the difficulties that arise from divergent Feynman integrals, difficulties 
which are overcome by renormalization procedures which go back to the 
pioneering work of Dyson. The author worked with divergent Feynman 
integrals around 1960 (Bremermann, 1959) and related them to the multipli- 
cation of Schwartz distributions (generalized functions) (Bremermann, 1963). 
Outside physics such divergencies can often be blamed on excessive idealiza- 
tion (cf. Bremermann, 1967b). Distribution (6-function-type) singularities 
and divergences arise only when integration in Fourier space is extended to 
infinity. 

In relativistic quantum field theory momentum space expansions in a 
flat Minkowski space are very convenient. Integration to infinity, however, 
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heads to divergencies or undef ined products of distr ibutions.  Renormaliza-  
tion procedures take care of these difficulties. However, if m o m e n t u m  space 
were finite, like posit ion space in general relativity, then infinities would 

disappear. Such "cut-off  physics" was unpopu la r  a round 1960. In view of 
the fact that in a bounded  universe mass, energies, and momenta  are 
likewise bounded  it would not  seem unreasonable  that a t tent ion to these 

bounds  could be fruitful. What  are the analogies of "b lack  holes" in 

m o m e n t u m  space? Why has posit ion space been geometrized while momen-  
tum space has remained with the geometry of the flat Minkowski space of 
special relativity? Fourier  t ransforms correspond to the character group of 

posit ion space. Only  for a flat posit ion space is the character group also a 
flat space. Is the o p e r a t o r - c o m m u t a t o r  formalism exempt from critical 
reexaminat ion? Is it reasonable to reexamine to concept of observer? In the 
author 's  theory, as set forth in this paper, computer  subunits ,  receiving and 

interpret ing data, are on an equal footing with human  observers. Perhaps it 
would be worthwhile to pursue this subject further. 

A C K N O W L E D G M E N T S  

The essence of this paper was delivered in a lecture at Mi~nster University, Germany, in 
honor of my academic teacher, Heinrich Behnke at the occasion of his birthday, October 9, 
1978. 
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